

Responsibilities and Roles

Other responsibilities vary by role:

Crew:

 Know how to perform tasks to run the boat: rope handling, reefing, driving, trimming sails, radio, etc.

Skipper: Responsible for the safety of the boat and everyone aboard

- Assuring boat is sound and has necessary safety equipment
- Assuring boat is being run and navigated in a safe, seamanlike manner
 ... and much more

Driving

- Know how the boat handles. Wheels handle like a car with very slow reflexes. Tillers don't.
- Steering a course either by the compass or towards an object
- Steering a point of sail usually close-hauled, when you steer by the jib tell-tails
- Letting other boats know your intentions
- On longer trips, updating the log and DR plot

Communication

- Normal lights and sound signals
- Distress signals
- Radio
 - Calling procedure
 - Channels to know (16, 9, 13, 27 locally)
 - Practice what to say, where to find data
 - Mayday / Pan Pan / Securite

Communication

Pan Pan, Mayday, or Securite?

- You see a large floating log in the main ship channel that could be a hazard to small boats.
- You are offshore, and a passenger starts complaining of chest pains.
- In Boston Harbor, a thru-hull fails and the boat starts filling with water, near the capacity of the primary bilge pump.
- On a spinnaker reach, your unsecured whisker pole whips forward and whacks a crewmember in the head, who drops to the deck senseless.

Crew Overboard Strategy

- 1. A clear chain of command
- 2. Mark the spot
- 3. Most important task: seeing the COB
- 4. Attaching the COB to the boat

Key tips:

- Furl the jib to control speed/reduce complexity
- No style points for rescue under sail; start the engine
- Only through periodic drills can you be prepared for the real event

Nautical Miles 0 10 20 40

Coverage based on Longley Rice Irregular Terrain Model on receiving a one (1) second transmission from a one (1) watt transmitter with an attenna two (2) meters above water level

68°17.096'W

A Polar Example

POLAR DIAGRAM

BOAT SPEED AS A FUNCTION
TRUE WIND VELOCITY & ANGLE

Yacht AUDACIOUS

NAVY 44 44 LOA NA-1 MASTHEAD SLOOP 150% JIB, KEEL Folding Exposed Prop

WIND	OPTIMUM VMG BEAT	OPTIMUM VMG RUN	OPTIM RUN
8 kt	4.375	143 °	
10 kt	5.241	146 °	
12 kt	6.008	158 °	
16 kt	7.246	171 °	
20 kt	8.040	174 °	
Notes:			
Boat - s	speed curves are	е	
	ferent true wind		

• optimum run angle

velocities as shown at right:

Run: 5/20/87 8:49:12 Cert 19065 Copyright 1987 USYRU Newport, RI

Bluewater Safety at Sea

20

MIT JAP 2016

